When man tries to imagine Paradise on earth, the immediate result is a very respectable Hell.

--Paul Claudel

The Thermodynamics of Solubility Equilibrium

In addition to the homogeneous equilibrium you have investigated in earlier experiments, an important heterogeneous equilibrium exists for many salts and their solutions. At some point as solute concentration is increased the solubility limit at a given temperature is reached. We say the solution is "saturated". Typically some undissolved solute will remain in the mixture and thus the potential for equilibrium between the solid phase and the dissolved solute in solution exists. For a hypothetical salt A_2B, the solubility equilibrium and equilibrium constant are expressed as:

$$A_2B(s) \rightleftharpoons 2A^+(aq) + B^{2-}(aq)$$

$$K_c = [A^+]^2[B^{2-}]$$

The amount of A_2B that dissolves is the "solubility" which can be expressed in any convenient units--here moles/Litre or Molarity is useful. From the reaction above you can see that this amount is the same as the amount of B^{2-} ion that enters the solution. Thus if we use the letter s to represent the solubility of A_2B, we can rewrite the equilibrium constant as:

$$K_c = (2s)^3s$$

Notice that the quantity $2s$ is substituted for $[A^+]$. This maintains the stoichiometric relationship with $[B^{2-}]$ while allowing the use of a single variable. Because the equilibrium constant is expressed as the product (as in multiplication) of solubilities, it is generally called the "solubility product constant" and given the symbol K_{sp}.

Typically when we speak about K_{sp} values we are interested in very slightly soluble salts--the kinds of compounds you learned as "insoluble" in your solubility rules. But the quantity can be calculated for any salt as long as you have solubility data. However, determining K_{sp} values from simple experiments in which solubility is measured almost never yields accurate results, even for very insoluble compounds. The reasons for this are complex and have to do with ion interactions which occur in all but the most dilute of solutions. In other words, there are "ideal" solutions (the kind we talk about) and "real" solutions (the kind we steer clear of) just as there are ideal and real gases.

For the purposes of this experiment we will ignore the effects of ion interaction. In fact, we will be using a very soluble salt, KNO_3, because it has characteristics that make it easy to work with, it's inexpensive, relatively harmless as used, and easily recovered for reuse.

The equilibrium established in a saturated solution of KNO_3 may be represented as:

$$\text{KNO}_3(s) \rightleftharpoons \text{K}^+(aq) + \text{NO}_3^-(aq)$$

As with all equilibria, the relative amounts of products and reactants at a given temperature are determined by the "tension" between the tendency toward maximum entropy and the tendency toward minimum energy. In this experiment you will first determine the solubility of potassium nitrate at a variety of temperatures and then use the solubility to calculate the "K_{sp}" of the salt. Recall the relationship between the equilibrium constant and the free energy change, ΔG^o:

$$\Delta G^o = -RT\ln K$$

where $R = 8.31 \text{ J/mol·K}$ and T is the temperature in Kelvin. So you can determine the free energy change at each temperature from the K_{sp} at each temperature.

The sign of the enthalpy change (ΔH) should be clear from the solubility behavior (i.e., whether more or less dissolves at higher temperatures) but the value of ΔH can also be determined from the value of the K_{sp}. It is known that over small temperature ranges, K and ΔH are related as follows:

$$\ln K = \frac{\Delta H}{R} \frac{1}{T} + C$$

$$y = m \times x + b$$

So a plot of the natural logs of the values of K_{sp} vs. $1/T$ (in Kelvin) will yield a nearly straight line with slope $=-\Delta H/R$ (again, R = 8.31 J/mol·K).

And, of course, once you know ΔG and ΔH, you can determine ΔS at each temperature. Again, it should be clear what the sign of the entropy change will be considering the process.

To summarize: you will determine the solubility of KNO_3 in water at different temperatures and use this information to calculate the "K_{sp}" of the salt. From the K_{sp} you will determine the free energy change, enthalpy change and entropy change for this process and compare them to the values calculated from tables in your text.
Preparing to experiment

You will be provided with the following materials:

1. solid KNO$_3$ (use about 3 g)
2. a temperature probe
3. a boiling water bath

Design an experiment to determine the temperature at which KNO$_3$ becomes insoluble in water (to start, add distilled water to the 4 mL mark with the solid already in the cylinder), gradually diluting the solution by 3 additions of 1 mL each and repeating the measurements. [see Technique]

BE SURE TO BRING YOUR TI-83/84 CALCULATOR TO CLASS FOR THIS EXPERIMENT. YOU WILL ALSO NEED A COPY OF THE HCHEM.83G FILES IN YOUR CALCULATOR MEMORY.

Pre-lab take-home quiz

These questions should be answered on a separate sheet of paper to be turned in on the day you do this experiment.

1. The solubility of ZnS at 25°C is 3.5 x 10$^{-12}$ M. What is the K_{sp} for ZnS? What is ΔG° at 25°C?
2. The K_{sp} for Ag$_2$S is 4.1 x 10$^{-52}$. What is [Ag$^+$] in a saturated solution of Ag$_2$S?
3. The K_{sp} for Ag$_2$CrO$_4$ is 9.0 x 10$^{-12}$. If 200 mL of 0.0050 M AgNO$_3$ is combined with 300 mL of 0.0020 M K$_2$CrO$_4$, will a precipitate form?

Technique

1. Determining the solubility

Try to minimize the amount of time the cylinder spends in the hot water, i.e., don't leave it there any longer than needed to dissolve the solid. Otherwise you will spend a lot of time waiting for the solution to cool before crystals form. Always keep the solution stirred and record the first temperature that crystals become visible. Experience seems to indicate that the falling temperature levels off a little as crystallization occurs. Be careful not to lose solid as you remove the thermometer probe from the cylinder to add more water.

KEEP THE THERMOMETER PROBE CABLE AWAY FROM THE HOTPLATE!!!!!!!

2. Recycling the KNO$_3$

After you have your four readings, pour your solution into the beaker indicated by your instructor. The water can be evaporated and the potassium nitrate reused.

The Chemicals

Potassium nitrate is commonly known as "saltpeter". It is a colorless, odorless solid with a saline, pungent taste. It is used in fireworks, pickling brines, the manufacture of glass, matches, gunpowder, freezing mixtures and candle wicks.

Analysis

1. Use the mass of KNO$_3$ and the measured volumes of the various mixtures to calculate the Molarities (solubilities) for each of the four trials.
2. Plot a graph of the solubility of KNO$_3$ (in mole/L) vs. the temperature. What does this graph suggest about the sign of ΔH for this process? Explain.
3. Use the calculated solubilities to determine the "K_{sp}" for potassium nitrate at the four temperatures measured. Then plot a graph as described in the introduction to determine the value of ΔH for this process. The ΔH° values for the process are given below.

$$\text{KNO}_3(s) \rightleftharpoons \text{K}^+(aq) + \text{NO}_3^-(aq)$$

\[-492.7 \quad -251.2 \quad -206.6 \quad \text{kJ/mol}\]

Calculate ΔH_{rxn} from them. Explain any disagreement.

4. Calculate the free energy change for this process at each of the four temperatures measured, using your "K_{sp}" values from #3. The ΔG° values for the process are given below:

$$\text{KNO}_3(s) \rightleftharpoons \text{K}^+(aq) + \text{NO}_3^-(aq)$$

\[-393.1 \quad -282.3 \quad -110.6 \quad \text{kJ/mol}\]

Calculate ΔG_{rxn} from them. Explain any disagreement.
5. Use the experimental values of ΔG and ΔH to calculate ΔS at each of the four temperatures. The S^o values for the process are given below:

$$\begin{align*}
\text{KNO}_3(s) &\rightleftharpoons K^+(aq) + NO_3^-(aq) \\
+132.9 &+102.5 +146.4 \quad \text{J/mol-K}
\end{align*}$$

Calculate ΔS_{rxn} from them. Explain any disagreement. How does the sign on ΔS "fit" this process? Is this process entropy or enthalpy driven—or both? Explain.

Now the "truth"

You already know that we choose to assume gases behave ideally because it greatly simplifies ordinary work in the lab and some of the mathematics that goes along with it. The same is true about solutions. What you have learned about the equilibrium in saturated solutions is true enough, but what you have not been told is that ions, even in rather dilute solutions, can clump together in groups, or establish quite large hydration spheres with water, etc. In other words, sometimes the actual concentration of "ions" in a solution is difficult to determine by simple experimental means.

The most accurate determinations of K_{sp} are done by examining successively more dilute solutions in light of a mathematical model of "real" solutions. When this is done and the ion concentration is extrapolated to zero, the "official" K_{sp} or what is sometimes call the thermodynamic K_{sp} is found. This value should come close to the value you would get if you found ΔG^o for the process and then used the expression $\Delta G^o = -RT\ln K_{sp}$ to determine the K_{sp}. This often results in disagreements between ordinary experimental values and calculated values related by factors of 10 or 100!!!

MORAL: Basic solubility and K_{sp} concepts are deceptively simple and not meant to be strictly mathematical.